

ENGINEERED TO OPTIMIZE THE COMMERCIAL COST OF ENERGY FOR DEEP WATER ENERGY

PELASTAR FLOATING WIND TURBINE

PROPRIETARY INFORMATION

PELASTAR – AN OPTIMIZED WIND FARM SOLUTION

Reduce capital and O&M costs to develop the lowest LCOE Floating Offshore Wind Turbine Farm:

- Minimize floating foundation hull steel weight.
- Minimize hydrodynamic response and mooring loads.
- Maximize turbine availability.
- Provide robust foundation and mooring for severe weather.
- Optimize cost for commercial scale operations (not a single demonstrator).

A tension leg platform (TLP) meets these requirements.

TENSION LEG PLATFORM TECHNOLOGY HISTORY

SeaStar TLP installed in 1998

Originates from deep water oil & gas technology in the 1980s.

- Suited for water depths greater than 1,000 ft.
- Allows onshore assembly.
- Lower mass than other floating solutions.
- No active ballast required.
- Stiff mooring results in reduced response to waves.
 - Higher turbine efficiency
 - Reduced dynamic loading on turbine components

PELASTAR TENSION LEG PLATFORM OVERVIEW

Project History:

- 2009 Carbon Trust Award
- **2011 DOE Funding**
- 2012 ETI FEED-level Design

Project Highlights:

- Supports a 6 MW turbine.
- DNV-GL approved Basis of Design and FEED-level design.
- 1:50 scale model test performed with software validation and reviewed by DNV-GL.

PELASTAR INNOVATIVE TECHNOLOGY

- Centralized buoyancy type TLP minimizes wave loads and therefore mooring loads.
- 5-arm design reduces cost from previous 6-tendon designs.
- 5-arm design provides redundancy to survive loss of one tendon.
- 5-arm design distributes and lowers peak tendon loads during a hydrodynamic slack event.
- Synthetic tendon design is costeffective and robust.

MOORING TECHNOLOGY INNOVATION

Synthetic Tendon Development

- Developed with DSM and FibreMax.
- High strength to survive slack-line events in extreme weather conditions.
- Cables allow initial creep and then set to minimize life-cycle tendon length adjustments.

Moored Response Motions

 Tank testing validates significantly reduced angular response motions.

TLP WIND FARM MOORING BENEFITS

Traditional Catenary Mooring

- Extensive footprint.
- Significant seabed impact.
- Catenary mooring requires significant chain lengths.
- Interference between mooring and power grid.

TLP Vertical Tendon Mooring

- Compact footprint.
- Minimal impact on seabed.
- Minimal impact on fishing ops.
- Efficient power grid connection.

OFFSHORE INSTALLATION CONCEPT

- Existing offshore dynamic position (DP) crane vessels.
 - Turbine and TLP foundation loaded on vessel for transit to site.
 - Crane lifts TLP foundation on site.
 - Foundation ballasted and tendons connected.
 - Foundation de-ballasted and tendon tensions verified.
 - Crane hook releases from foundation.
 - Crane lifts turbine onto foundation and secured.
- Allows onshore assembly of TLP tower and turbine.
- Allows onshore commissioning of turbine.

SCALABLE SOLUTION

	6 MW	12 MW
Water Depth (LAT)	55 m	100 m
Rotor Diameter	150 m	220 m
Hub Height (above LAT)	108 m	137 m
Tower Weight	450 mt	1,350 mt

Kyle Beattie, PE
kcbeattie@glosten.com
New Bedford, MA
Seattle, WA

PROPRIETARY INFORMATION