

Floating/moored structures are common

VRYHOF

Typical Mooring Line configurations

Typical Elements:

- Winches and fairlead
 - or underwater adjuster
- Top Chain
- Main Mooring line
- Bottom Chain
- Additional Clump weights
- Connectors
- Anchor

Moorings Design

Catenary

Restoring forces: weight

- + Easier installation
- + Damping effect: lower loads
- + Lower cost
- Significant spread/footprint
- Significant excursion

Taut and semi-taut leg

Restoring forces: elasticity

- + Higher loads in line
- + Larger units can be moored
- + Reduced excursion
- Limited to deepwater
- Medium footprint

Tension leg platform (TLP)

Restoring forces: floating reaction/tension in tendons

- + Minimal footprint
- + Minimal excursion
- Foundation challenges
- Highest cost

Mooring Line Composition

- chain
- wire rope
- drag embedment anchor
- synthetic rope
- wire rope
- vertical loaded anchor (VLA)
- Tendons
- Piles

Foundation Design

Mooring Design Challenges

Challenges

- Mooring Line Cost and Complexity
- Anchor Cost and Complexity
- Onsite Installation Simplicity
- Decommissioning and Maintainability
- Water Depth Independence
- Reduced Sensitivity to Soil Conditions
- Minimum Footprint vs cost

Recommendation

- → consider standard equipment
- → include installation cost on analysis
- → plan local facilities capabilities
- → it will happen, design for it
- → over design vs. mass customization
- → over design vs. mass customization
- → reduced life vs. cost

Mooring Installation cost is mostly driven by Foundations and Local Facilities

